
3. TECHNICAL DATA

3.1 Product drawing

All dimensions in mm.

1	Direction of air flow "V"
2	Max. clearance for screw 10 mm
3	Tightening torque 1.5 ± 0.2 Nm
4	Cable diameter min. 4mm, max. 10mm, tightening torque 2.5±0.4 Nm

3.2 Nominal data

Motor	M3G084-GF
Phase	1~
Nominal voltage / VAC	230
Nominal voltage	200 277
range / VAC	
Frequency / Hz	50/60
Method of obtaining data	ml
Speed (rpm) / min-1	1100
Power consumption / W	360
Current draw / A	2.2
Max. back pressure / Pa	100
Min. ambient	-25
temperature / °C	
Max. ambient	55
temperature / °C	

ml = Max. load \cdot me = Max. efficiency \cdot fa = Free air cs = Customer specification \cdot ce = Customer equipment

Subject to change

3.3 Data according to Commission Regulation (EU) 327/2011

	Actual	Req. 2015
01 Overall efficiency η _{es} / %	41.8	30.8
02 Measurement category	Α	
03 Efficiency category	Static	
04 Efficiency grade N	51	40
05 Variable speed drive	Yes	
06 Year of manufacture	The year of manufacture is specified on the product's rating label.	
07 Manufacturer	ebm-papst Mulfingen GmbH & Co. KG Amtsgericht (court of registration) Stuttgart · HRA 590344 D-74673 Mulfingen	
08 Type	A3G500-AD01-58	3
09 Power consumption Ped / kW	0.34	
09 Air flow qv / m³/h	4535	
09 Pressure increase total pfs / Pa	104	
10 Speed (rpm) n / min-1	1110	
11 Specific ratio*	1.00	
12 Recycling/disposal	Information on recycling and disposal is provided in the operating instructions.	
13 Maintenance	Information on installation, operation and maintenance is provided in the operating instructions.	
14 Additional components	Components used to defficiency that are not measurement category CE declaration.	apparent from the

^{*} Specific ratio = 1 + pfs / 100 000 Pa

Data obtained at optimum efficiency level. The efficiency values displayed for achieving conformity with the Ecodesign Regulation EU 327/2011 has been reached with defined air duct components (e.g. inlet rings). The dimensions must be requested from ebm-papst. If other air conduction geometries are used on the installation side, the ebm-papst evaluation loses its validity/the conformity must be confirmed again. The product does not fall within the scope of Regulation (EU) 2019/1781 due to the exception specified in Article 2 (2a) (motors completely integrated into a product).

3.4 Technical description

Mainh	E 0 I.m		
Weight	5.8 kg		
Size	500 mm		
Motor size	84		
Rotor surface	Painted black		
Terminal box material	PC/ABS plastic		
Electronics housing material	Die-cast aluminum		
Blade material	Press-fitted sheet steel blank, sprayed with PP plastic		
Number of blades	5		
Airflow direction	V		
Direction of rotation	Counterclockwise, viewed toward rotor		
Degree of protection	IP54		
Insulation class	"B"		
Moisture (F) /	H2		
Environmental (H)			
protection class			
Installation position	Shaft horizontal or rotor on bottom; rotor		
	on top on request		
Condensation	On rotor side		
drainage holes			
Mode	S1		
Motor bearing	Ball bearing		
Technical features	- Output 10 VDC, max. 1.1 mA		
	- Alarm relay		
	- Motor current limitation		
	- Soft start		
	- Control input 0-10 VDC / PWM		
	- Control interface with SELV potential		
	safely disconnected from supply		
	- Thermal overload protection for		
	electronics/motor		
	- Line undervoltage detection		
Touch current	<= 3.5 mA		
according to IEC			
60990 (measuring			
circuit Fig. 4, TN			
system) Electrical hookup	Terminal hov		
<u> </u>	Terminal box		
Motor protection	Thermal overload protector (TOP) internally connected		
Protection class	I (with customer connection of protective earth)		
Conformity with standards	EN 61800-5-1; UKCA; CE		
Approval	EAC		
1 1 1 1 1	1		

⇒ Use the device in accordance with its degree of protection.

Information on surface quality

The surfaces of the products conform to the generally applicable industrial standard. The surface quality may change during the production period. This has no effect on strength, dimensional stability and dimensional accuracy.

The color pigments in the paints used perceptibly react to UV light over the course of time. The product is to be protected against UV radiation to prevent the formation of patches and fading. Changes in color are not a reason for complaint and are not covered by the warranty. UV radiation in the frequency range and the intensity of natural solar radiation has no effect on the technical properties of the products.

3.5 Mounting data

Further mounting data can be taken from the product drawing or Chapter 4.1 Mechanical connection as required.

Strength class of	8.8
screws	

Secure the screws against unintentional loosening (e.g. use self-locking screws).

3.6 Transport and storage conditions

Max. permitted ambient temp. for motor (transport/ storage)	+80 °C
Min. permitted ambient temp. for motor (transport/ storage)	-40 °C

3.7 Electromagnetic compatibility

EMC immunity to	According to EN 61000-6-2
interference	
EMC circuit feedback	According to EN 61000-3-2/3
EMC interference	According to EN 61000-6-3 (household
emission	environment)

4. CONNECTION AND STARTUP

4.1 Mechanical connection

CAUTION

Cutting and crushing hazard when removing fan from packaging

- → Carefully remove the device from its packaging, grasping it by only the blades near the hub. Strictly avoid shocks.
- → Wear safety shoes and cut-resistant safety gloves.

CAUTION

The blades of the impeller could be damaged.

- → Carefully set down the fan on a soft surface. Make sure the blades are not subjected to load.
- → Following installation, make sure the impeller moves easily and that the blades of the impeller are not deformed or bent and do not catch at any point.

NOTE

Damage to the device from vibration

Bearing damage, shorter service life

- → The fan must not be subjected to force or excessive vibration from sections of the installation.
- → If the fan is connected to air ducts, the connection should be isolated from vibration, e.g. using compensators or similar elements.
- → Ensure stress-free attachment of the fan to the substructure.
- ⇒ Check the device for transport damage. Damaged devices are not to be installed.
- ⇒ Install the undamaged device in accordance with your application.

CAUTION

Possible damage to the device

If the device slips during installation, serious damage can result.

- → Ensure that the device is securely positioned at its place of installation until all fastening screws have been tightened.
- The fan must not be strained on fastening.

4.2 Electrical connection

DANGER

Voltage on the device

Electric shock

- → Always connect a protective earth first.
- → Check the protective earth.

DANGER

Faulty insulation

Risk of fatal injury from electric shock

- → Use only cables that meet the specified installation regulations for voltage, current, insulation material, capacity, etc.
- → Route cables so that they cannot be touched by any rotating parts.

CAUTION

Voltage

The fan is a built-in component and has no disconnecting switch.

- → Only connect the fan to circuits that can be switched off with an all-pole disconnection switch.
- → When working on the fan, secure the system/machine in which the fan is installed so as to prevent it from being switched back on.

CAUTION

Electric shock

Voltage on metal part

 $\ensuremath{\rightarrow}$ Use the device only with the cable guard and terminal box intended for it.

NOTE

Water ingress into wires or cables

Water ingress at the customer end of the cable can damage the device

→ Make sure the end of the cable is connected in a dry environment.

Only connect the device to circuits that can be switched off with an all-pole disconnection switch.

4.2.1 Requirements

- Check whether the information on the nameplate matches the connection data.
- Before connecting the device, make sure the power supply matches the device voltage.
- Only use cables designed for the current level indicated on the nameolate.

For determining the cross-section, note the sizing criteria according to EN 61800-5-1. The protective earth must have a cross-section equal to or greater than that of the phase conductor.

We recommend the use of 105 $^{\circ}\text{C}$ cables. Ensure that the minimum cable cross-section is at least

AWG 26 / 0.13 mm².

Protective earth contact resistance according to EN 61800-5-1

Compliance with the resistance specifications according to EN 61800-5-1 for the protective earth connection circuit must be verified in the end application. Depending on the installation situation, it may be necessary to connect an additional protective earth conductor by way of the extra protective earth terminal provided on the device. The protective earth terminal is located on the housing and provided with a protective earth symbol and a hole.

4.2.2 Reactive currents

Because of the EMC filter integrated for compliance with EMC limits (interference emission and immunity to interference), reactive currents can be measured in the supply line even when the motor is at a standstill and the line voltage is switched on

- The values are typically in the range < 250 mA
- At the same time, the effective power in this operating state (operational readiness) is typically < 4 W.

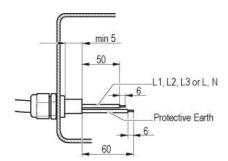
4.2.3 Residual current circuit breaker (RCCB)

If the use of a residual current device (RCD) is required in your installation, only pulse-current sensitive and/or AC/DC-sensitive residual current devices (type F or B) are permissible. As with variable frequency drives, residual current devices cannot provide personal safety while the device is being operated. When the device power supply is switched on, pulsed charging currents from the capacitors in the integrated EMC filter can lead to the residual current devices tripping instantly. We recommend the use of residual current circuit breakers (RCCB) with a trip threshold of 300 mA and delayed tripping (super-resistant, characteristic K).

4.2.4 Basic insulation of the alarm relay

As the alarm relay only has basic insulation (for TN/TT systems) or functional insulation (for phase-conductor-grounded networks) with respect to the supply voltage, and not double insulation like the rest of the interface, corresponding precautions must be taken for industrial applications (EN 61800-5-1).

→ The voltage switched by the alarm relay (e.g. 24 VDC) must then have no electrical connection to the 10 V output, 0-10 V control input and GND (electrically isolated interface).


4.2.5 Locked-rotor protection

Due to the locked-rotor protection, the starting current (LRA) is equal to or less than the nominal current (FLA).

4.3 Connection in terminal box

4.3.1 Preparing cables for connection

Only strip the cable as far as necessary, ensuring that the cable gland is sealed and there is no strain on the connections. For tightening torques, see Chapter 3.1 Product drawing.

NOTE

Tightness and strain relief are dependent on the cable used.

 \rightarrow This must be checked by the user.

4.3.2 Connecting wires to terminals

WARNING

Live terminals and connections even with device switched off

Electric shock

- → Wait five minutes after disconnecting the voltage at all poles before opening the device.
- ⇒ Remove the cap from the cable gland.

Only remove caps where cables are fed in.

- ⇒ Route the wire(s) (not included in scope of delivery) into the terminal box.
- ⇒ Connect the wires to the corresponding terminals.

Use a screwdriver to do so.

When connecting, ensure that no wire ends fan out.

- ⇒ Insert the leads until they meet resistance.
- ⇒ Seal the terminal box.

4.3.3 Cable routing

Water must be prevented from reaching the cable gland along the cable.

OTF

Damage caused by moisture penetration.

Moisture can penetrate into the terminal box if water is constantly present at the cable glands.

- → To prevent the constant accumulation of water at the cable glands, the cable should be routed in a U-shaped loop wherever possible.
- → If this is not possible, a drip edge can be produced by fitting a cable tie directly in front of the cable gland for example.

Fans installed lying flat

Make sure the cable is routed in a U-shaped loop.

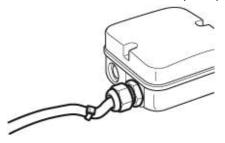


Fig. 2: Fan installed lying flat, cable routed in a U-shaped loop.

Fans installed upright

When routing the cable, make sure that the cable glands are located at the bottom. The cables must always be routed downward.

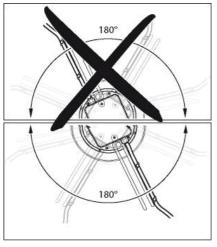
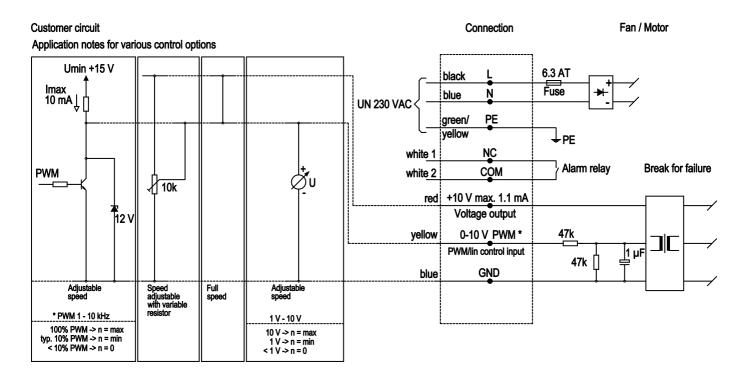


Fig. 3: Cable routing for fans installed upright.

4.4 Factory settings


Factory settings made for the device by ebm-papst.

Mode	PWM control
Group address	01
Fan/device address	01
Max. PWM / %	100
Min. PWM / %	0
Save set value to	No
EEPROM	
Set value requirement	Analog
Direction of action	Positive (heating)

4.5 Connection diagram

Drawing preliminary!

4.6 Opening additional cable glands

A second cable gland opening can be made in the terminal box.

WARNING

In the event of a fault, the cable gland is energized Electric shock

- → Do not use metal cable glands with plastic terminal boxes.
- Screw the cable gland into the precut thread using a wrench. When doing so, take note of the tightening torques; see Chapter 3.1 Product drawing.
- Remove the plastic tab that fell off inside the terminal box when it was penetrated.

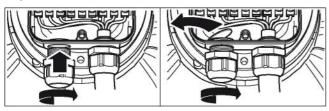


Fig. 4: Cable gland opening

NOTE

Tightness and strain relief are dependent on the cable

→ This must be checked by the user.

4.7 Checking connections

- Ensure isolation from supply (all phases).
- → Make sure a restart is impossible
- ⇒ Check the cables for proper fit.
- Screw the terminal box cover back on again. Terminal box tightening torque, see Chapter 3.1 Product drawing.
- Route the cables in the terminal box so that the terminal box cover closes without resistance.
- Use all screw plugs. Insert the screws by hand to avoid damage to the threads.
- Make sure the terminal box is completely closed and sealed and that all screws and cable glands have been properly tightened.

4.8 Switching on the device

The device may only be switched on if it has been installed properly and in accordance with its intended use, including the required safety mechanisms and professional electrical hookup. This also applies for devices which have already been equipped with plugs and terminals or similar connectors by the customer.

WARNING Hot motor housing

Risk of fire

- → Ensure that no combustible or flammable materials are located close to the fan.
- ⇒ Before switching on, check the device for visible external damage and make sure the protective devices are functional.
- ⇒ Check the fan's air flow paths for foreign matter and remove any foreign matter found.
- ⇒ Apply the nominal supply voltage.
- Start the device by changing the input signal.

NOTE

Damage to the device from vibration

Bearing damage, shorter service life

- → Low-vibration operation of the fan must be ensured over the entire speed control range.
- → Severe vibration can arise for instance from inexpert handling, transportation damage and resultant imbalance or be caused by component or structural resonance.
- Speed ranges with excessively high vibration levels and possibly resonant frequencies must be determined in the course of fan commissioning.
- → Either run through the resonant range as quickly as possible with speed control or find another remedy.
- → Operation with excessively high vibration levels can lead to premature failure.

4.9 Switching off the device

Switching off the device during operation:

- ⇒ Switch off the device via the control input.
- Do not switch the motor (e.g. in cyclic operation) on and off via power supply

Switching off the device for maintenance:

- ⇒ Switch off the device via the control input.
- ⇒ Do not switch the motor (e.g. in cyclic operation) on and off via power supply.
- ⇒ Disconnect the device from the power supply.

5. INTEGRATED PROTECTIVE FEATURES

The integrated protective functions cause the motor to switch off automatically in the event of the faults described in the table.

Fault	Safety feature description/ function
Rotor position detection error	An automatic restart follows.
Blocked rotor	⇒ After the blockage is removed, the motor restarts automatically.
Line undervoltage (line voltage outside of permitted nominal voltage range)	⇒ If the line voltage returns to permitted values, the motor restarts automatically.

6. MAINTENANCE, MALFUNCTIONS, POSSIBLE CAUSES AND REMEDIES

Do not perform any repairs on your device. Send the device to ebmpapst for repair or replacement.

WARNING

Live terminals and connections even with device switched off

Electric shock

→ Wait five minutes after disconnecting the voltage at all poles before opening the device.

CAUTION

If control voltage or a stored speed set value is applied, the motor will restart automatically, e.g. after a power failure.

Risk of injury

- → Keep out of the device's danger zone.
- When working on the device, switch off the line voltage and ensure that it cannot be switched back on.
- → Wait until the device comes to a stop.
- → After working on the device, remove any tools or other objects from the device.

NOTE

If the device is not operated for a lengthy period in installed condition in a dry environment, it is to be started up and operated at full speed for one hour at least every four months. If the device is not operated for a lengthy period in installed condition in a damp environment (e.g. outdoors), it is to be started up and operated at full speed for at least two hours once a month to move the bearings and allow any condensate that may have ingressed to evaporate.

Malfunction/fault	Possible cause	Possible remedy
Impeller not running smoothly	Imbalance in rotating parts	Clean the device; replace it if imbalance persists after cleaning. Make sure no weight clips are removed during cleaning.
Motor not turning	Mechanical blockage	Switch off, isolate from supply and remove mechanical blockage.

	Line voltage faulty Faulty connection	Check line voltage, restore power supply, apply control signal. Isolate from supply, correct connection:
		see connection diagram.
Motor/electronics overtemperature	Deficient cooling	Improve cooling. Let the device cool down. To reset the error message, switch off the line voltage for at least 25 s and then switch it on again.
	Thermal overload protector activated	Allow motor to cool off, locate and rectify cause of error, release restart lockout if necessary
	Ambient temperature too high	Reduce the ambient temperature. Reset by reducing control input to 0.
	Impermissible point of operation	Correct the operating point. Let the device cool down.

In the event of further malfunctions, contact ebm-papst.

6.1 Cleaning

To ensure a long service life, check the fans regularly for proper operation and soiling. The frequency of checking is to be adapted accordingly depending on the degree of soiling.

DANGER Risk of injury from rotating fan.

- → Only clean when not in motion. Do not disconnect the fan from the power supply, just switch it off via the control input. This will prevent start-up of the fan.
- ⇒ Dirt deposits on the motor housing can cause overheating of the motor.
- Soiling of the impeller can cause vibration that will shorten the service life of the fan.
- ⇒ Severe vibration can destroy the fan.
- ⇒ In such cases, switch off the fan immediately and clean it.
- The preferred method of cleaning is dry cleaning, e.g. using compressed air.
- ⇒ Do not use aggressive cleaning agents!

NOTE

Damage to the device during cleaning

Malfunction possible

- → Do not clean the device using a water jet or high-pressure cleaner
- → Do not use any acid, alkali or solvent-basedcleaning
- → Do not use any pointed or sharp-edged objects for cleaning
- ⇒ Completely remove any cleaning agents used.

- If severe corrosion is visible on load-bearing or rotating parts, switch off the device immediately and replace it.
- ⇒ Repair of load-bearing or rotating parts is not permitted!
- Operate the fan for 2 hours at maximum speed so that any water that has ingressed can evaporate.
- If cleaning does not eliminate vibrations, the fan may need to be rebalanced. To have it rebalanced, contact ebm-papst.
- ⇒ The fan is equipped with maintenance-free ball bearings. The lifetime lubrication of the ball bearings is designed for a service life of 40,000 hours.
- If bearing replacement is necessary after that period, contact ebmpapst.
- ⇒ Adapt the maintenance intervals to the actual level of dust exposure.

6.2 Safety inspection

NOTE

High-voltage test

The integrated EMC filter has Y capacitors. The tripping current is exceeded when AC testing voltage is applied.

→ Test the device with DC voltage when you perform the legally required high-voltage test. The voltage to be used corresponds to the peak value of the AC voltage required by the standard.

What to check	How to check	How often	What action?
Contact protection cover for intactness or damage	Visual inspection	At least every 6 months	Repair or replacement of device
Device for damage to blades and housing	Visual inspection	At least every 6 months	Replacement of device
Fastening the cables	Visual inspection	At least every 6 months	Fasten
Insulation of cables for damage	Visual inspection	At least every 6 months	Replace cables
Tightness of cable gland	Visual inspection	At least every 6 months	Retighten, replace if damaged
Condensation drainage holes for clogging, where necessary	Visual inspection	At least every 6 months	Open holes
Welds for crack formation	Visual inspection	At least every 6 months	Replace device
Abnormal bearing noise	acoustic	At least every 6 months	Replace device

6.3 Disposal

For ebm-papst, environmental protection and resource preservation are top priority corporate goals.

ebm-papst operates an environmental management system which is certified in accordance with ISO 14001 and rigorously implemented around the world on the basis of German standards.

Right from the development stage, ecological design, technical safety and health protection are fixed criteria.

The following section contains recommendations for ecological disposal of the product and its components.

6.3.1 Country-specific legal requirements

NOTE

Country-specific legal requirements

Always observe the applicable country-specific legal regulations with regard to the disposal of products or waste occurring in the various phases of the life cycle. The corresponding disposal standards are also to be heeded.

6.3.2 Disassembly

Disassembly of the product must be performed or supervised by qualified personnel with the appropriate technical knowledge. The product is to be disassembled into suitable components for disposal employing standard procedures for motors.

WARNING

Heavy parts of the product may drop off. Some of the product components are heavy. These components could drop off during disassembly.

This can result in fatal or serious injury and material damage.

→ Secure components before unfastening to stop them falling.

6.3.3 Component disposal

The products are mostly made of steel, copper, aluminum and plastic. Metallic materials are generally considered to be fully recyclable. Separate the components for recycling into the following categories:

- Steel and iron
- Aluminum
- Non-ferrous metal, e.g. motor windings
- Plastics, particularly with brominated flame retardants, in accordance with marking
- · Insulating materials
- Cables and wires
- Electronic scrap, e.g. circuit boards

Only ferrite magnets and not rare earth magnets are used in external rotor motors from ebm-papst Mulfingen GmbH & Co. KG.

Ferrite magnets can be disposed of in the same way as normal iron and steel.

Electrical insulating materials on the product, in cables and wires are made of similar materials and are therefore to be treated in the same

The materials concerned are as follows:

- Miscellaneous insulators used in the terminal box
- Power cables
- Cables for internal wiring
- Electrolytic capacitors

